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INTRODUCTION

Let X be a locally compact Hausdorff space and (E, II . Ii) a normed space
over IK (= IR or C). If W is a vector subspace of 'it'o(X; E), the space of all
continuous functions J: X -+ E that vanish at infinity, and rp is a mapping
from X into the non-empty subsets of E, we are interested in finding
necessary and sufficient conditions under which, for every e >0, there is
some g E W such that g(x) E rp(x) + {t E E; /I t/l < e} for all x E X; that is,
when, for every e >0, there is an e-approximate W-selection for rp. More
generally, we shall be interested in establishing a "localization formula" for
the distance of rp from W:

dist(rp; W) = inf sup sup II y - g(x )11.
ge w xex ye",(x)

By this we mean the following: suppose W is module over a subalgebra A of
~(X; IK), the algebra of all bounded continuous IK-valued functions on X.
Let A be the equivalence relation on X defined by A, and for each x E X, let
A(x) be the equivalence class of x modulo A. Under this circumstance, when
can we write

dist(rp; W) = sup dist(rpIA(x); WILf(x»?
xeX

* Deceased, July 27, 1981.

0021-9045/82/09000 1-15$02.00/0
Copyright © 1982 by Academic Press, Inc.

All rights of reproduction in any form reserved.



2 PROLLA AND MACHADO

In the language of Buck [2], when such a formula holds we say that a strong
version of the Stone-Weierstrass theorem is valid. We show in Section I that
this is true when qJ is upper semicontinuous and vanishes at infinity with
respect to W. (See Theorem 1.5.)

Our interest in set-valued mappings comes in part from the consideration
of best simultaneous approximation: given a bounded set Fe 'l&"o(X; E) and a
non-empty subset We 'l&"o(X; E), the relative Chebyshev radius of F (with
respect to W) is the number

radw(F) = inf sup II g - fll.
gEW fEF

If for every x E X, qJ(x) = (f(x);fE Fl, then

dist(qJ; W) = radw(F).

When F is totally bounded, the mapping qJ is upper semicontinuous and
vanishes at infinity with respect to any W, and the localization formula of
dist(qJ; W) yields the analogous result for the Chebyshev radius

radw(F) = sup radwl,i(x) (FIL1(x)).
XEX

(See Theorem 1.11.)
In Section 2, we apply the results of Section I to the case of the so-called

Weierstrass-Stone subspaces W = n*('l&"o(Y; E)) and present a formula for
dist(f; W), where fE 'l&"o(X; E), in terms of the Chebyshev radius of
f(n-I(y)), which generalizes a result of Olech [4]. (See Theorem 2.2.) Even
more generally we consider the case of F c ~(X; E) a totally bounded
subset and present a formula for rad"'(~o(Y;E»(F) in terms of the Chebyshev
radius of F(n-I(y)) = U {f(n-I(y));fc Fl. (See Theorem 2.4.)

In Section 3, we deal with the problem of finding weighted approximate
W-selections of qJ. We solve this problem in the case qJ(x) is convex, for each
x E X, and qJ is lower semicontinuous and vanishes at infinity with respect to
We 'l&"V00(X; E), where V is the set of weights on X under consideration
(see Theorem 3.5).

The main tool, in Sections 1 and 3, is a result on partitions of unity by
means of functions on a closed subalgebra of ~(X; IK) due to Nachbin (see
[3, Lemma I D. In fact, we show that the reasoning in the proof of the so­
called bounded case of the weighted approximation problem found in
Nachbin [3] carries over to the case of set-valued mappings.

Let us explain some notation and terminology. If X and E are topological
spaces, 'l&"(X; E) denotes the set of all continuous functionsf: X ---+ E. If qJ is a
map from X into the non-empty subsets of E, we call such a map a carrier of
X into E. If L1 is any equivalence relation on X, and x E X, we write L1(x) for
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the A-equivalence class containing x; that is, A(x) = lyE X; (x, y) E A}. If A
is the equivalence relation determined by A c W(X; E), A(x) = {y E X;
a(x) = a(y) for all a E A}, and each A(x) is a closed subset of X. If Y c X is
any non-empty subset, and! X --+ S, is any mapping, where S is a non-empty
set, we denote by flY the mapping y E Y --+ f(y). If F is any family of
mappings f: X --+ S, we denote by FI Y the set 11IY; fE F}.

1. A STRONG WEIERSTRASS-STONE THEOREM FOR

UPPER SEMICONTINUOUS CARRIERS

Throughout Sections 1 and 2, X stands for a locally compact Hausdorff
space and E stands for a normed space over IK, where IK = IR of IK = iC. The
vector subspace of W(X; E) consisting of all thosefE W(X; E) which vanish
at infinity will be denoted by ~(X; E). The space Wo(X; E) is normed by the
sup-norm

f --+ Ilfll = sup {llf(x)ll; x E Xf·

When X is compact, ~(X;E) = W(X; E).
If A c '&;,(X; IK) is a self-adjoint subalgebra, then for any A -module

W c ~(X; E) one has the following "strong" formulation of the
Weierstrass-Stone theorem. For any fE ~(X; E) let

dist(f; W) = inf{llf- gil; g E WI.

Then

dist(f; W) = sup dist(fIA(x); WIA(x)),
XEX

where A(x) = {y E X; a(x) = a(y) for all a E A}. (See Theorem 6.1 of Prolla
[5].) Our aim in this section is to generalize this formula for set-valued
mappings. Let ((J be a carrier from X into E. We define the distance of ((J from
function g E ~(X; E) to be

dist(((J; g) = sup { sup II y - g(x)II}
XEX YECP(X)

and the distance of ((J from a subset We Wo(X; E) to be

dist(((J; W) = inf {dist(((J; g); g E WI.

For any carrier ((J one obviously has

sup dist(((JIA(x); WIA(x)) <dist(((J; W).
XEX
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DEFINITION 1.1. A carrier ({) of X into E is said to be upper semicon­
tinuous (u.s.c.) with respect to W c ~(X; E), if given wE Wand r> 0, for
each x E X such that (()(x) c B(w(x); r) and each e > 0, there is a
neighborhood U of x such that (()(y) c B(w(y); r + e) for all y E U. (If vEE
and s > 0, we denote by B(v; s) the set {u E E; II u - vii < s}.)

In particular, (() is U.S.c. with respect to We '6'o(X; E) if, given wE Wand
r> 0, the set {xEX; ({)(x) cB(w(x); r)} is open.

EXAMPLE 1.2. If fE '6'o(X; E), then ({)(x) = {f(x)}, x E X, is upper
semicontinuous with respect to any W c ~(X; E). Indeed, for each w E W
and r > 0, the set {x E X; (()(x) c B(w(x); r)} = {x E X; Ilf(x) -- w(x)11 < r} is
open.

EXAMPLE 1.3. Let Fe '6'o(X; E) be an equicontinuous subset. Define a
carrier ({) from X into E by setting

({)(x) = {f(x);fE F}

for all x E X. Then (() is U.S.c. with respect to any We '6'o(X; E). Indeed, let
wE W, r> °and x E X such that (()(x) c B(w(x); r) be given. Let e >°be
given. By equicontinuity, there is a neighborhood U of x such that II f(t) ­
w(t) - (f(x) - w(x))11 < e for all t E U andfE F. Hence y E U implies

(()(y) c B(w(y); r + e).

In particular, if F c '6'o(X; E) is totally bounded, then the carrier (() defined
above is U.S.c. with respect to any We '6'o(X; E).

DEFINITION 104. Let (() be a carrier of X into E and let We '6'o(X; E).
We say that ({) vanishes at infinity with respect to W, if for each wE Wand

e >°the set

{x E X; (()(x) n (E\B(w(x); e)) *0}

is relatively compact.

THEOREM 1.5. Let A c '6'b(X; IK) be a self-adjoint subalgebra and let
We '6'o(X; E) be an A-module. For any carrier (() ofX into E which is upper
semicontinuous and vanishes at infinity with respect to W, we have

dist(qJ; W) = sup dist(qJILl(x); WI Ll(x)).
XEX

Proof Let A = sup {dist(qJILl(x); WILl(x)); x E X}. We may assume that
A contains the constants. Let °< e. For each x E X, there exists gx E W
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such that dist(tpIA(x); gxIA(x)1 <A+e/4. This means that ilt - gxCy)11 <
A+ e/4 for all t E tp(y) and y E A(x). Since tp is upper semicontinuous with
respect to W, there is an open neighborhood Ux of x such that

II t - gx(x')11 < A. + e/2 for all t E tp(x'), x' E U,.

Clearly, Ux:=J A(x).
Since qJ vanishes at infinity with respect to W, the closure K x of

sx = 1y E X; tp(y) n (E\B(w(y); A+ e/2)) *01

is compact. We claim that A(x) n K x = 0. Indeed, assume z E LI (x) n K,.
Since A(x) c Ux and Kx is the closure of Sx' there is some y E U, n SX' But
qJ(y)cB(w(y); A+e/2) for all yEUx and so y cannot be in SX' By
[3, Lemma 1] there exists a finite set {x l' x 2 '"'' x n 1c X and for each
I ~ i ~ n, there is tpi E A such that tpi ~ 0, qJilKx = °and L7~ I qJi = I on X.
Let g = .:L7= I qJi gx' Then for each x E X and t EqJ(x) we have lit - g(x)11 ~
A. + e/2. In fact, either x E KXi and then qJi(X) = 0; or else x E Uti and then
II t - g,(x )11 <A+ e/2. Hence.,

II t - g(x)11 = II~I qJi(X)(t - gXi(X)) II

n

~ ~ qJi(x)11 t - gx;(x)11
i·-:o-l

n

~ (A. + e/2) ~ qJi(X) = A. + e/2.
i~ I

Therefore dist(qJ; g) ~ A. +e/2. Choose 0> 0 so that 0 .:L7~ I II g ,(x)11 < e/2
for all x E X; and for each 1~ i ~ n choose ai EA· ~uch that
lai(x) - qJi(x)1 <0 for all x E X. Now h = .:L7~ I a j g, belongs to Wand
dist(qJ; h) ~ A. + e. A fortiori, dist(qJ; W) ~ A. + e. Sinc~ Ie> 0 was arbitrary,
dist(cp; W) ~ A.

DEFINITION 1.6. A family of functions Fe ,??(X; E) is said to vanish
collectively at infinity if, for each e >0, there is a compact subset K c X
such that 11/(x)11 < e for all x E K and IE F.

EXAMPLE I.7. Let Fe '??o(X; E) be a totally bounded subset. Then F
vanishes collectively at infinity. Indeed, let e > 0 be given. There exists a
finite set {l1,f2 ,...,fn1c F such that, for each IE F, there is 1~ i ~ n with
III- ~II < e/2. For each I ~ i ~ n, there is a compact subset K i c X such
that 11~(x)1I < e/2 for all x E K i • Let K be the union K , U K 2 U '" U Kn •

Then for all x E K and IE F, 11/(x)11 < e.
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PROPOSITION 1.8. Let Fe 0'(X; E) be a family which vanishes collec­
tively at infinity and let We 0'o(X; E). The carrier cp(x) = {f(x); fE F},
x E X, vanishes at infinity with respect to W.

Proof If Fe 0'(X; E) vanishes collectively at infinity and wE '«'o(X; E),
then G = {f- w;fE F} vanishes collectively at infinity too. Let K be the
compact set such that Ilf(x) - w(x)11 < G for all x tl. K and fE F. Then
cp(x) c B(w(x); e) for all x tl. K. Hence

X\lx E X; cp(x) c B(w(x); e)} c K,

and so the set

jx E X; cp(x) n (E\B(w(x); e)) -=1= 0f

is relatively compact.

THEOREM 1.9. Let A and W be as in Theorem 1.5. Let Fe 0'o(X; E) be
a totally bounded subset and define for x E X, cp(x) = {f(x);fE F}. Then

dist(cp; W) = sup dist(cpILl(x); WILl(x)).
XEX

Proof By Example 1.3, cp is upper semicontinuous, and by Example 1.7
and Proposition 1.8, cp vanishes at infinity with respect to any We '«'o(X; E).
It remains to apply Theorem 1.5.

THEOREM 1.10. Let X be a compact Hausdorff space; let A c 'f,f(X; IK)
be a self-adjoint subalgebra, and let We '&'(X; E) be an A-module. Let
Fe 0'(X; E) be a bounded and equicontinuous subset and define cp(x) =

{f(x);fE F} for all x E X. Then

dist(cp; W) = sup dist(cpILl(x); WI Ll(x)).
XEX

Proof By Example 1.3, cp is upper semicontinuous. Since X is compact,
any Fe '&'(X; E) vanishes collectively at infinity, and then by
Proposition 1.8, cp vanishes at infinity with respect to any We 'lif(X; E) =
'f,fo(X; E).

Let us apply Theorems 1.9 and 1.10 to the problem of best simultaneous
approximation in 0'o(X; E). For a normed space (N, 11·11), and a non-empty
subset WeN, one defines for each bounded subset F of N the relative
Chebyshev radius of F with respect to W:

radw(F) = inf sup Ilf- gil·
~E w fEF
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When W = N, one speaks of the Chebyshev radius of F and writes

rad(F) = inf sup Ilf- gil.
gEN IEI'

7

Assume now N = 'iifo(X; E) with the sup-norm and let qJ be the carrier from
X into E defined by

qJ(x) = {f(x);fE FI

for all x E X, where F c ~(X; E) is some bounded subset. Then, for any
Wc~(X;E),

dist(qJ; W) = radw(F).

Also, if L1 is any equivalence relation on X with closed equivalence classes,
then

dist(qJILI(x); WI LI (x» = rad w(,1(xl(FILI(x»)

for all x E X. Hence the following result follows from Theorems 1.9 and
1.10.

THEOREM 1.11. Let A c 'iifb(X; IK) be a self-adjoint subalgebra, and let
W c ~o(X; E) be an A -module. For any totally bounded subset F c ~(X; E),
or for any bounded and equicontinuous subset Fe 'iif(X; E), if X is compact,
we have

radw(F) = sup radw1M<l(FILI(x»,
XEX

where LI is the equivalence relation defined by A.

COROLLARY 1.12. Let V be a closed subspace of E, and let F be as in
Theorem 1.11. Then

radwo(x:v) (F) = sup radv(F(x».
XEX

Proof The subspace W = ~(X; V) = j g E ~(X; E); g(X) c Vf is a
~(X; IK )-module and W(x) = V for each x E X. If one introduces the carrier
qJ(x) = {f(x); fE F} = F(x), then for each point x E X one has dist(qJ(x);
W(x» = dist(qJ(x); V) = radv(F(x», and the result follows from
Theorem 1.11.

DEFINITION 1.13. Let B be a bounded subset of a normed space
(N, 11·11). The Kuratowksi measure of non-precompactness of B is the greatest
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lower bound a(B) of all r > 0 such that there is a finite set J c B such that
Be U{B(f; r); fE J}.

Clearly, a(B) = 0 if, and only if, B is totally bounded.

THEOREM 1.14. Let A, L1 and W be as in Theorem 1.11. For any
bounded subset F c ~(X; E) one has

r(F; W) ~ radw(F) ~ r(F; W) + a(F),

where

r(F; W) = sup radwl~(x) (FIL1(x)).
XEX

Proof Clearly, r(F; W) ~ radw(F). Let r> 0 be such that there is a finite
set J c F such that FeU {B(f; r);fE J}. Fix g E W. For eachfE F there is
some f, in J such that II f - fJ II < r. Hence,

sup II g - fll ~ sup II g - fll + r,
fEF fEJ

and from this it follows that

By Theorem 1.11, since J is finite,

radw(J) = r(J; W).

On the other hand, J c F implies r(J; W) ~ r(F; W). Hence

radw(F) ~ r(F; W) + r,

and so

radw(F) ~ r(F; W) + a(F).

COROLLARY 1.15. Let V be a closed subspace ofE, and let Fe 'G'o(X; E)
be a bounded subset. Then

r(F; V) ~ rad""'o(x;v)(F) ~ r(F; V) + a(F),

where

r(F; V) = sup radv(F(x)).
XEX

Proof Apply Theorem 1.14 to W = ~o(X; V) = {g E ~o(X; E); g(x) c V}
and A = ~b(X; IK).
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2. WEIERSTRASS-STONE SUBSPACES

9

Let L1 be an equivalence relation of X, and rp a L1-bounded carrier of X into
E; that is,

rp(L1(x)) = U {rp(t); t E L1(x)}

is a bounded subset of E, for each x E X. Define

o(rp) = sup rad(rp(L1(x)).
XEX

THEOREM 2.1. Let A c ~(X; IK) be a self-adjoint subalgebra and let L1
be the equivalence relation defined by A. Let W c ~(X; E) be an A-module
such that, for each x E X and z E E, there is some g E W such that get) = z
for all t E L1(x). Then for any L1-bounded carrier rp from X into E which is
upper semicontinuous and vanishes at infinity with respect to W, we have

dist(rp; W) ~ o(rp).

Proof By Theorem 1.5 we have

dist(rp; W) = sup inf sup sup II y - g(t)ll·
XEX gEW IE~{X) yE.,W

Let x E X. For each z E E, choose gz E W such that gz(t) = z for all
t E L1(x). Then

inf sup sup II y - g(t)11
gEW IE~(X) YE.,W

~ sup sup II y - gzCt)11 = sup IIY - z II·
IE~(X) yE.,(t) YE.,(~(X))

Since z E E was arbitrary, we have

inf sup sup II y - g(t)11
gEW IE~(X) yE.,(X)

~ inf sup II y - z II ,
ZEE YE.,(~(X»

and from this it clearly follows that dist(rp; W) ~ o(rp).
Now let n: X -4 Y be a proper continuous surjection, where Y is another

locally compact Hausdorff space. Since n is proper, n - 1(K) is compact in X
for each compact set KeY, and then n* maps ~(Y;E) into ~(X; E),
where n* is the map h -4 h 0 n. The sets n - I (y), for y E Y, are the
equivalence classes of the equivalence relation defined on X by the
subalgebra A" c ~(X; IR) of all g 0 n with g E ~(Y; IR).
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LetfE~(X;E) be given. Since n is proper, n-I(y) is compact, and then
f(n-I(y)) is compact, hence bounded in E, for each y E Y. Let us define

J(f) = sup {rad(f(n-1(y))); yEn.

Let W c ~(X; E) be a subset such that each g E W is constant on every
n-1(y), y E Y. Then

Ilf- gil = sup sup' Ilf(t) - g(t)11 ~ J(f)
yeY (e,,- (y)

for all g E W. Hence

J(f) <dist(f; W)

for all W c ~(X; E) such that each g E W is constant on the sets n - I (y),
yE Y.

THEOREM 2.2. Let Y be a locally compact Hausdorff space and let M be
a ~(Y; IK)-submodule of ~(Y; E) such that M(y) =E for all y E Y. Then
for any fE ~(X;E), we have

dist(f; n*(M)) = J(f)

if n: X ---> Y is a proper continuous surjection.

Proof Clearly, W = n*(M) c '6'o(X; E) is an A ,,-module and by Theorem
2.1

dist(f; n*(M)) <J(f).

Since g E n*(M) is constant on the sets n - 1(y), y E Y, then by the remarks
made before we have (j(f) <dist(f; n*(M)).

Remark 1.3. In Olech [4 J the formula dist(f; n*('&'o(Y; E))) = (j(f) was
proved for X and Y compact, and E a uniformly convex Banach space (see
[4, Theorem 2D. Indeed, Olech has the formula as a corollary to his more
difficult result that, under the hypothesis above, each fE '6'o(X; E) has a best
approximation g from W = n*('6'o(Y; E)), i.e., dist(f; W) = II f - gil, and for
such g, II f - gil = (j(f). We have seen that the formula for the distance is
true in general and does not depend on the existence of a best approximation
from W, indeed it is a corollary of the "strong" version of the
Weierstrass-Stone theorem that we proved, namely, Theorem 1.5.

Let us now consider the case of best simultaneous approximation.
Consider then a totally bounded subset Fe '&'o(X; E) and the associated
carrier qJ from X into E defined by qJ(x) = U(x); fE F} for all x E X. Since
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F is bounded, it follows that ({J is a LI-bounded carrier for any equivalence
ralation LI on X.

For each y E Y define

and

i5(F) = sup{rad(F(n-1(y))); yEn.

Then i5(F) = i5(((J), and by Theorem 2.1

radw(F) ~ i5(F)

for W = n*(M), where M is as in Theorem 2.2. Conversely, each g E n*(M)
is constant on n-1(y) for every y E Y. Thus

dist({J; g) = sup sup sup II z - g(t)11
YEl' fE,,-I(y) ZE<;>W

~ sup inf sup sup liz - vii
YEl' I'EE fE,,-I(y) ZE<;>W

= sup inf sup sup II f(t) - v II
yE Y I'EI:' IE 1'[ I(y) fEF

= sup rad(F(n-l(y))) = i5(F).
yEY

Hence

i5(F) ~ dist({J; W) = radw(F).

We have thus proved the following:

THEOREM 2.4. Let Y be a locally compact HausdorjJ space and let M be
a ~(Y; IK)-submodule of ~(Y;E) such that M(y) = E for all y E Y. Then,
for any totally bounded subset F c ~(X; E), we have

rad"'(M)(F) = sup{rad(F(n-'(y)));y E Y}

if n : X --+ Y is a proper continuous surjection.

COROLLARY 2.5. Let Y, M and n be as in Theorem 2.4. For any bounded
subset F E ~(X; E) we have

i5(F) ~ rad"'(M)(F) ~ i5(F) ~ i5(F) +a(F)

where i5(F) = sup {rad(F(n-1(y))); y E Yf.
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Proof The inequality (j(F) <; rad"'(M)(F) was established in the proof of
Theorem 2.4. Indeed, in that part of the proof the arguments depend only on
F being bounded. The inequality rad"'(M)(F) <; (j(F) +a(F) follows from
Theorem 2.4 in the same way as Theorem 1.14 follows from Theorem 1.11.

3. WEIGHTED ApPROXIMATION OF SET-VALUED MAPPINGS

Throughout this section X stands for a completely regular Hausdorff space
and E stands for a locally convex Hausdorff space over IK, where IK = R or
IK = C. If V is a family of upper semicontinuous non-negative functions on
X, we denote by '&'V00(X; E) the vector subspace of '6'(X; E) consisting of all
fE '6'(X; E) such that vfvanishes at infinity, for each v E V, that is, lx E X;
v(x) p(f(x)) >e} is compact, for each e > 0, and each continuous seminorm
p on E. We introduce a locally convex topology on ,&,Voc,(X; E) by
considering the family of seminorms f -4 sup {v(x) p(f(x)); x E X}, where
v E V and p is a continuous seminorm on E. Without loss of generality, we
may assume that V is upper directed in the following sense: given v and u in
V, there are t >°and w E V such that

max(v(x), u(x)) <; tw(x)

for all x E X.
Let us consider a subalgebra A c '6'(X; IK) and a vector subspace

We'&' V00(X; E) which is an A -module, that is, AWe W under pointwise
multiplication operation. The weighted approximation problem posed by
Nachbin [3, p. 289] consists in asking for a description of the closure of W
in '6'V00 (X; E). This was solved by Nachbin in the case IK = IR, or IK = ((
and A self-adjoint, under the following hypothesis: every a E A is bounded
on the support of every v E V. (See [3, Theorem 1, p. 295].)

DEFINITION 3.1. Let qJ be a carrier of X into E. We say that qJ is lower
semicontinuous (l.s.c.) with respect to We '6'V00(X; E) if for each wE W,

v E V, e >°and p a continuous seminorm on E, the set

{x E X; qJ(x)nB,,(x)p(w(x); e)"* 0f

is open, where

Bv(x)p(w(x); e) = {t E E; vex) pet - w(x)) < e}.

Similarly, we say that qJ vanishes at infinity with respect to
We '&'V00(X; E) if, for each w, v, e and p as above, the set

{x E X; qJ(x) n (E\Bv(x)p(w(x); e))"* 0}

is relatively compact.
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EXAMPLE 3.2. If fE '&'Voo(X; E), then qJ(x) = {f(x)f, x E X, is lower
semicontinuous and vanishes at infinity with respect to any

We '&'V00 (X; E).

DEFINITION 3.3. Let qJ be a carrier of X into E, and let We '&'V00(X; E)
be a non-empty subset. We say that qJ is W-admissible if qJ is lower semicon­
tinuous and vanishes at infinity with respect to W.

DEFINITION 3.4. Let qJ be a carrier of X into E, and let We '&'V00 (X; E)
be a non-empty subset. Given v E V, e > 0 and p a continuous seminorm on
E, we say that g E W is a (v, e, p) - approximate W-selection for ((J, if
g(x) E qJ(x) +B,,(X)p(O; e) for all x E X. And we say that qJ can be V­
approximated by elements of W if qJ has (v, e, p )-approximate W-selections
for all choices of v E V, e > 0 and p a continuous seminorm on E.

The weighted approximation problem for set-valued mappings consists in.
given a subspace W c ~Voo(X; E), find necessary and sufficient conditions
for a W-admissible carrier qJ to be V-approximated by elements of W.

IffE'6'Voo (x;E) and for all xEX, <p(x) = {f(x)l, then clearly ((J can be
V-approximated by elements of W c ~V00 (X; E) if, and only if,fbelongs to
the closure of Win '6'V00 (X; E).

Let us remark that if qJ is a carrier and W is an A -module, where
A E ~b(X; IK), then in order to prove that qJ can be V-approximated by
elements of W, we may assume without loss of generality that A is closed in
~b(X; IK) in the sup-norm. Indeed, let B denote the closure of A and assume
that qJ can be V-approximated by elements of the B-module W' generated by
W. Let v E V, e > 0 and p a continuous seminorm on E be given. Then we
can find hE W' such that h(x) E qJ(x) +B,,(x)p(O; e12) for all x E X. Suppose
h = 2.::7~ I biWi with bi E B, Wi E W, i = 1,2,... , n. Choose 15 > 0 so small that
152.::7=1 v(x)p(wlx»<eI2 for all xEX. Let aiEA be such that
Iai(x) - bi(x)1 < 15 for all x E X, i = 1,2,... , n. Then g = 2.::;'c I aiWi belongs to
the A-module Wand g(x) E qJ(x) + B,,(x)p(O; e) for all x E X.

THEOREM 3.5. Let A c '6'b(X; IK) be a self-adjoint subalgebra and let
W c ~Voo(X; E) be an A-module. Let qJ be a W-admissible carrier of X into
E such that ((J(x) is convex for each x E X. We can V-approximate qJ by
elements of W if, and only if, for each x E X, qJ IL1 (x) can be VI L1 (x)­
approximated by elements of WIL1(x), where L1 is the equivalence relation
defined by A.

Proof The condition is obviously necessary. Conversely, assume that qJ
is such that, for each xE X, ((J1L1(x) can be VIL1(x)-approximated by
elements of WIL1(x).

Let v E V, e > 0 and p a continuous seminorms on E be given.
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Without loss of generality we may assume that A contains the constants.
Indeed, the algebra B generated by A and the constants defines the same
equivalence relation on X as A, and W is a B-module. By the remarks
preceding the theorem we may also assume that A is a closed subalgebra of
~(X; IK).

For every x E X, there is some gx E W such that for all t E Lf(x),
gxCt) E qJ(t) +BV(X)p(O; c). Let If/(t) be the set qJ(t) +B,,(t)p(O; c), for all t E X.
Since qJ is lower semicontinuous with respect to W, the set

U< = {x' EX; gxCx') E If/(x')}

is open and, by hypothesis, Ux:::J Lf(x). On the other hand, since qJ vanishes
at infinity with respect to W, the set

is relatively compact. Now K x = X'\Ux is closed and contained in S<;
therefore K x is compact. By [3, Lemma 1 j, there exists a finite set
{XI' x 2 ,,,., x n } C X and, for each 1::;;; i::;;; n, there is qJi E A such that qJi ~ 0,
qJilKx = 0 and "L7= I qJi = I on X. Then g = "L7 I qJi g < belongs to Wand
g(x) EqJ(x) +Bv(x)p(O; c), for all xEX.' I

In fact, either x E K x and then qJi(X) = 0; or else x E K < and then
gx;(x) E qJ(x) +BI,(x)p(O; d. Hence g(x) is a convex combination' ~f elements
which lie in the convex set qJ(x) +Bv(x)p(O; c). Therefore
g(x)EqJ(x) +BV(x)p(O; c) for all xEX; i.e., g is a (v,c,p)-approximate W­
selection for qJ.

Remark 3.6. Notice that we proved the following stronger result: if for
each x E X, qJ ILf(x) has a (u, c, p)-approximate (WILf(x ))-selection, then qJ
has a (u, e, p)-approximate W-selection.

Hence we have shown that in the approximation lemma of Blatter II,
p. 37], neither paracompactness of T nor compactness of the equivalence
classes of the equivalence relation R are needed, if instead of the usual
notion of lower semicontinuity for set-valued mappings, one requires I.s.c. in
the sense of Definition 3.1. Notice that, when a carrier qJ from X into E is
l.s.c. with respect to the set We 'iff V00(X; E) of all constant functions, then
jx E X; qJ(x) II U *' 0} is open in X, for every open set U of X; that is, qJ is
l.s.c. in the usual sense. One example of V such that ~V00(X; E) actually
contains the constant functions in given by the set V of all characteristic
functions of compact subsets. Indeed, in this case 'iff Vc.o(X; E) is just
~(X; E) with the compact-open topology.

Another example is given by the set V of all positive functions belonging
to ~(X; IR) for a locally compact space X. In this case ~Voo(X; E) is
~(X; E) with the strict topology.
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However, when V is the set of all positive constant functions on X,
WVoo(X; E) is ~(X; E) with the uniform topology and, unless X is compact,
it contains no non-zero constant function.
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