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INTRODUCTION

Let X be a locally compact Hausdorff space and (E, || - ||) a normed space
over K (=R or C). If W is a vector subspace of %,(X; E), the space of all
continuous functions f: X — E that vanish at infinity, and ¢ is a mapping
from X into the non—empty subsets of E, we are interested in finding
necessary and sufficient conditions under which, for every & > 0, there is
some g € W such that g(x) € p(x) + {t E E; ||t]| < €} for all x € X; that is,
when, for every € > 0, there is an e-approximate W-selection for ¢. More
generally, we shall be interested in establishing a “localization formula” for
the distance of ¢ from W:

dist(p; W) = inf sup sup [ y—g(x)|.
LEW xe€X yeo(x)
By this we mean the following: suppose W is module over a subalgebra 4 of
%,(X; K), the algebra of all bounded continuous K-valued functions on X,
Let 4 be the equivalence relation on X defined by A, and for each x € X, let
A(x) be the equivalence class of x modulo 4. Under this circumstance, when
can we write

dist(p; W)= sug dist(p|d(x); W|4(x))?

* Deceased, July 27, 1981.
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2 PROLLA AND MACHADO

In the language of Buck (2], when such a formula holds we say that a strong
version of the Stone—Weierstrass theorem is valid. We show in Section 1 that
this is true when ¢ is upper semicontinuous and vanishes at infinity with
respect to W. (See Theorem 1.5.)

Our interest in set-valued mappings comes in part from the consideration
of best simultaneous approximation: given a bounded set F « ,(X; E) and a
non-empty subset W < %,(X; E), the relative Chebyshev radius of F (with
respect to W) is the number

rad,(F) = inf sup | g —f|.
gEW feF

If for every x € X, ¢(x) = {f(x); € F}, then
dist(p; W) =rad,(F).

When F is totally bounded, the mapping ¢ is upper semicontinuous and
vanishes at infinity with respect to any W, and the localization formula of
dist(p; W) yields the analogous result for the Chebyshev radius

rad, (F) = igg rady 5y (Fl4(x)).

(See Theorem 1.11.)

In Section 2, we apply the results of Section 1 to the case of the so-called
Weierstrass—Stone subspaces W = n*(%,(Y; E)) and present a formula for
dist(fs W), where f€%,(X;E), in terms of the Chebyshev radius of
S (7 "(»)), which generalizes a result of Olech [4]. (See Theorem 2.2.) Even
more generally we consider the case of Fc %,(X;E) a totally bounded
subset and present a formula for rad,. g, y,s),(F) in terms of the Chebyshev
radius of F(r~'(¥))= U {f (=~ '(»)); f< F}. (See Theorem 2.4.)

In Section 3, we deal with the problem of finding weighted approximate
W-selections of . We solve this problem in the case ¢(x) is convex, for each
x € X, and ¢ is lower semicontinuous and vanishes at infinity with respect to
Wc#V (X, E), where V' is the set of weights on X under consideration
(see Theorem 3.5).

The main tool, in Sections 1 and 3, is a result on partitions of unity by
means of functions on a closed subalgebra of %,(X; K) due to Nachbin (see
{3, Lemma 1]). In fact, we show that the reasoning in the proof of the so-
called bounded case of the weighted approximation problem found in
Nachbin {3] carries over to the case of set-valued mappings.

Let us explain some notation and terminology. If X and E are topological
spaces, #(X; E) denotes the set of all continuous functions /: X - E. If p is a
map from X into the non-empty subsets of E, we call such a map a carrier of
X into E. If 4 is any equivalence relation on X, and x € X, we write 4(x) for
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the Ad-equivalence class containing x; that is, A(x) = {y € X; (x, p) € 4}. If 4
is the equivalence relation determined by A cZ(X;E), A(x)={y€ X,
a(x)=a(y) for all a € 4}, and each 4(x) is a closed subset of X. If Y < X is
any non-empty subset, and f: X — §, is any mapping, where S is a non-empty
set, we denote by f|Y the mapping y€ Y- f(y). If F is any family of
mappings /: X — S, we denote by F|Y the set {f|Y; fE F}.

1. A STRONG WEIERSTRASS—STONE THEOREM FOR
UPPER SEMICONTINUOUS CARRIERS

Throughout Sections 1 and 2, X stands for a locally compact Hausdorff
space and F stands for a normed space over IK, where K =R of K = C. The
vector subspace of #(X; E)) consisting of all those f€ % (X; E) which vanish
at infinity will be denoted by &,(X; E). The space %,(X; E) is normed by the
sup—norm

S= 7= supdll f&)5 x € Xt

When X is compact, €(X; E)=% (X, E).

If Ac#(X;IK) is a self-adjoint subalgebra, then for any 4-module
Wc%W(X;E) one has the following “strong” formulation of the
Weierstrass—Stone theorem. For any € %(X; E) let

dist(f; W) = inf{|| f—g[l: g € W}
Then
dist(f; W) = sup dist(f'|4(x); W|4(x)),
XEX
where 4(x) = {y € X; a(x) = a(y) for all a € 4}. (See Theorem 6.1 of Prolla
[5].) Our aim in this section is to generalize this formula for set-valued

mappings. Let ¢ be a carrier from X into E. We define the distance of ¢ from
SJunction g € %,(X; E) to be

dist(p; g) = sup { sup ||y —g(x)|}
X€EX yeop(x)

and the distance of ¢ from a subset W c %,(X; F) to be
dist(p; W) = inf {dist(g; g); g € W}.
For any carrier ¢ one obviously has

sup dist(g|4(x); W|4(x)) < dist(g; W).
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DEFINITION 1.1. A carrier ¢ of X into E is said to be upper semicon-
tinuous (u.s.c.) with respect to W c %,(X; E), if given w€ W and r > 0, for
each x€ X such that ¢(x)cB(w(x); r) and each ¢>0, there is a
neighborhood U of x such that ¢(y)c B(w(y);r+e)forallye U. (If v EE
and s > 0, we denote by B(v;s) the set {u € E; |u—v| < s}.)

In particular, ¢ is u.s.c. with respect to W c %,(X; E) if, given w € W and
r> 0, the set {x € X; ¢(x) < B(w(x); r)} is open.

ExampLE 1.2. If fEF(X;E), then o(x)={f(x)}, xE X, is upper
semicontinuous with respect to any W < %,(X; E). Indeed, for each wE W
and r > 0, the set {x € X; o(x) c B(w(x); r)} = {x € X; || f(x) — w(x)|| < r} is
open.

ExAMPLE 1.3. Let Fc %, (X;E) be an equicontinuous subset. Define a
carrier ¢ from X into E by setting

o(x)= {f(x); fE€ F}

for all x € X. Then ¢ is u.s.c. with respect to any W c &(X; E). Indeed, let
we& W, r>0 and x € X such that ¢(x) < B(w(x); r) be given. Let ¢ > 0 be
given. By equicontinuity, there is a neighborhood U of x such that || f(¢) —
w(t) — (f (x) — w(x))|| < € for all € U and f€ F. Hence y € U implies

o(y) = B(w(y); r + ¢).

In particular, if F < %,(X; E) is totally bounded, then the carrier ¢ defined
above is u.s.c. with respect to any W < %,(X; E).

DEFINITION 1.4. Let ¢ be a carrier of X into F and let W < %,(X; E).
We say that ¢ vanishes at infinity with respect to W, if for each w € W and
e > 0 the set

{x € X; p(x) N (E\B(w(x); £)) # @}
is relatively compact.

THEOREM 1.5. Let A c%,(X;K) be a self-adjoint subalgebra and let
W c %,(X; E) be an A-module. For any carrier ¢ of X into E which is upper
semicontinuous and vanishes at infinity with respect to W, we have

dist(g; W) = sup dist(p|4(x); W|4(x)).

Proof. Let A =sup{dist{p|d(x); W|d4(x)); x € X}. We may assume that
A contains the constants. Let 0 < e. For each x € X, there exists g, € W
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such that dist(¢|4(x); g.l4(x)} <A+ ¢/4. This means that ||t — g (y)l| <
A+ ¢/4 for all t € ¢(y) and y € A(x). Since ¢ is upper semicontinuous with
respect to W, there is an open neighborhood U, of x such that

It —g (x) <A +€/2 forallt€ o(x’), x’ € U,.

Clearly, U, > 4(x).
Since ¢ vanishes at infinity with respect to W, the closure K, of

S, ={yEX;0(y) N (E\B(w(y); 1 +¢/2)) # @}

is compact. We claim that A(x) N K, = @. Indeed, assume z € A(x) N K.
Since 4(x) < U, and K| is the closure of S, there is some y € U, M S,. But
p(y) = B(w(y); A+¢/2) for all y€ U, and so y cannot be in §,. By
[3, Lemma 1] there exists a finite set {x,, X,,., x,} <X and for each
1 <i < n, there is ¢, € 4 such that ¢, > 0, 9:|K,,=0and 37 ,9;,=1o0nX.
Let g=3"7_, ¢; &, Then for each x € X and ¢ € ¢(x) we have ||t — g(x)|| <
A +¢/2. In fact, either x € K, and then ¢,(x) = 0; or else x € U, and then
|t —g. ()l <A+ ¢e/2. Hence

N 0,1 - 8 )

i=1

[£— gl =

n
<N ol —g

i=1

<@A+¢e/2) p(x)=2+¢/2.
i
Therefore dist(p; g) <A + /2. Choose 6 >0 so that § 3}, || g, (%) <¢/2
for all x€X; and for each 1<gign choose g,€A4 such that
la;(x) — @x)| < for all x€ X. Now h=37 , a; g, belongs to W and
dist(p; ) <A + €. A fortiori, dist(p; W) < A+ ¢. Since ¢ > 0 was arbitrary,
dist(g; W) < 4.

DEeFINITION 1.6. A family of functions Fc #(X; E) is said to vanish
collectively at infinity if, for each ¢ > 0, there is a compact subset K< X
such that || f(x)|| < ¢ for all x& K and f€ F.

ExampLE 1.7. Let FC%(X;E) be a totally bounded subset. Then F
vanishes collectively at infinity. Indeed, let € > O be given. There exists a
finite set {f},/;,.-..f,,} < F such that, for each fE€ F, there is 1 i< n with
| f—/fill <&/2. For each 1< i< n, there is a compact subset K; = X such
that || fi(x)|| < &/2 for all x & K;. Let K be the union K, UK, U --. UK,.
Then for all x& K and fE€F, || f(x)] < &.
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ProrosiTION 1.8. Let Fc % (X; E) be a family which vanishes collec-
tively at infinity and let W c €(X; E). The carrier p(x)={f(x); fE€ F},
x € X, vanishes at infinity with respect to W.

Proof. If Fc@(X; E) vanishes collectively at infinity and w € %,(X; E),
then G = {f— w;f&€ F} vanishes collectively at infinity too. Let K be the
compact set such that || f(x) —w(x)| <¢ for all x& K and f€ F. Then
o(x) < B(w(x); ¢) for all x € K. Hence

X\{x € X; p(x) = B(w(x); &)} < K,
and so the set
{x € X5 9(x) N (E\B(w(x); £)) + O}

is relatively compact.

THEOREM 1.9. Let A and W be as in Theorem 1.5. Let F — €4(X; E) be
a totally bounded subset and define for x € X, ¢(x) = {f(x); f€ F}. Then

dist(p; W) = sup dist(@|4(x); W]4(x)).

Proof. By Example 1.3, ¢ is upper semicontinuous, and by Example 1.7
and Proposition 1.8, ¢ vanishes at infinity with respect to any W < %,(X; E).
It remains to apply Theorem 1.5.

THEOREM 1.10. Let X be a compact Hausdorff space; let A < % (X; K)
be a self-adjoint subalgebra, and let W <% (X;E) be an A-module. Let
Fc%(X;E) be a bounded and equicontinuous subset and define ¢(x)=
{f(x); fE F} for all x € X. Then

dist(p; W) = sup dist(e|4(x); W|4(x)).
xXeX

Proof. By Example 1.3, ¢ is upper semicontinuous. Since X is compact,
any Fc#@(X;E) vanishes collectively at infinity, and then by
Proposition 1.8, ¢ vanishes at infinity with respect to any Wc @ (X E) =
%y (X E).

Let us apply Theorems 1.9 and 1.10 to the problem of best simultaneous
approximation in %,(X; E). For a normed space (V,|-||), and a non-empty
subset W < N, one defines for each bounded subset F of N the relative
Chebyshev radius of F with respect to W:

rad,(F) = inf sup ||/ g||.
geW feF
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When W = N, one speaks of the Chebyshev radius of F and writes
rad(F) = inf sup || f— g]|.
geN feF

Assume now N = %,(X; E) with the sup-norm and let ¢ be the carrier from
X into E defined by

o(x)={/(x); fE F}
for all x € X, where F < #,(X; E) is some bounded subset. Then, for any
W #(X; E),

dist(p; W) = rad,(F).

Also, if 4 is any equivalence relation on X with closed equivalence classes,
then

dist(p|4(x); W|A4(x)) = rady, 5, (Fl4(x))

for all x € X. Hence the following result follows from Theorems 1.9 and
1.10.

THEOREM L.11. Let A < %,(X;K) be a self-adjoint subalgebra, and let
W < &,(X; E) be an A-module. For any totally bounded subset F — %,(X; E).
or for any bounded and equicontinuous subset F < #(X; E), if X is compact,
we have

rad, (F) = s:;g rad,, o (Fl4(x)),

where A is the equivalence relation defined by A.

COROLLARY 1.12. Let V be a closed subspace of E, and let F be as in
Theorem 1.11. Then

rad, (., (F) = sug rad, (F(x)).
Xe

Progf. The subspace W=%X;V)={g€F(X;E); gX)c V! is a
#,(X; K)-module and W(x)=V for each x € X. If one introduces the carrier
o(x)={f(x); fE€ F| =F(x), then for each point x € X one has dist(p(x);
W(x)) = dist(p(x); V) =rad (F(x)), and the result follows from
Theorem 1.11.

DEerFINITION 1.13. Let B be a bounded subset of a normed space
(N, |- |I). The Kuratowksi measure of non-precompactness of B is the greatest



8 PROLLA AND MACHADO

lower bound a(B) of all » > 0 such that there is a finite set J < B such that
BcU{B(fir); fE T}
Clearly, a(B) =0 if, and only if, B is totally bounded.

THEOREM 1.14. Let A, 4 and W be as in Theorem 1.11. For any
bounded subset F < €,(X; E) one has

r(F; W)y < rad (F) < r(F; W) + a(F),
where

r(Fy W) = sup rady s (F14(x))

Proof. Clearly, r(F; W) < rad,, (F). Let r > 0 be such that there is a finite
set J  F such that F < (J{B(f,r);f€ J}. Fix g € W. For each '€ F there is
some f; in J such that || f— f}|| < r. Hence,

sup||g—fll<supllg—fI+r
fer fed

and from this it follows that
rad, (F) <rady(J) + r.
By Theorem 1.11, since J is finite,
rad,(J) = r(J; W).
On the other hand, J < F implies r(J; W) < r(F; W). Hence
rad, (F) <r(Fs W) +r,

and so

rad, (F) < r(Fs W) + a(F).

COROLLARY 1.15. Let V be a closed subspace of E, and let F < %,(X; E)
be a bounded subset. Then

r(F, V) gradgo(x;y)(F) <r(F; V) + a(F),

where

r(F, V)= sup rad, (F(x)).

Proof. Apply Theorem 1.14 to W =% (X; V) = { g € (X; E); g(x) = V}
and 4 = €,(X; K).
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2. WEIERSTRASS—STONE SUBSPACES

Let 4 be an equivalence relation of X, and ¢ a A-bounded carrier of X into
F; that is,

o(d(x)) = Ulot); t € 4(x)}
is a bounded subset of E, for each x € X. Define

o(p) = sup rad(p(4(x)).

THEOREM 2.1. Let A c%,(X; K) be a self-adjoint subalgebra and let A
be the equivalence relation defined by A. Let W < €,(X; E) be an A-module
such that, for each x € X and z € E, there is some g € W such that g(t)=z
for all t € A(x). Then for any A-bounded carrier ¢ from X into E which is
upper semicontinuous and vanishes at infinity with respect to W, we have

dist(p; W) < 6(p).
Proof. By Theorem 1.5 we have

dist(¢; W)= sup inf sup sup [lv—g()l.
&

xeX gew tedlx) y€olt)

Let x € X. For each z € E, choose g, € W such that g.(t)=2z for all
t € A(x). Then

inf sup sup)lly—g(f)H

gEW (eA(x) veolt

< sup sup [[y—g (= sup |y-—zl.
YE@(A(x))

teA(x) yeol(t)
Since z € E was arbitrary, we have

“inf  sup sup)lly—g(t)Il

geW teA(x) yeolx

<inf sup |ly—z|,
zeE yeo(A(x)

and from this it clearly follows that dist(¢; W) < d(p).

Now let m: X —» Y be a proper continuous surjection, where Y is another
locally compact Hausdorff space. Since 7 is proper, 7~ '(K) is compact in X
for each compact set K< Y, and then n* maps #,(Y; E) into %,(X; E),
where n* is the map A—hon The sets n~'(p), for y€ Y, are the
equivalence classes of the equivalence relation defined on X by the
subalgebra 4, c #,(X; R) of all g o m with g € €,(Y; R).
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Let f € %,(X; E) be given. Since 7 is proper, n~'(y) is compact, and then
S(=n~"'(»)) is compact, hence bounded in E, for each y € Y. Let us define

8(f) = sup{rad(f(z~"(y))); yE Y},

Let W < %,(X; E) be a subset such that each g € W is constant on every
n ' (y), y €Y. Then

If—gll= sup sup £ (2) —g@ll > 6(f)

for all g € W. Hence

o(f) < dist(f; W)

for all W< %,(X; E) such that each g € W is constant on the sets 77 '(y),
VEY.

THEOREM 2.2. Let Y be a locally compact Hausdorff space and let M be
a %,(Y; IK)-submodule of %,(Y; E) such that M(y)=E for all y € Y. Then
for any fE€ €,(X; E), we have

dist(f2 7*(M)) = 6(f)

if m: X > Y is a proper continuous surjection.

Proof. Clearly, W =n*(M) Cc%,(X; E) is an A -module and by Theorem
2.1

dist(f; 7*(M)) < 6(/).

Since g € n*(M) is constant on the sets 77 '(), y € Y, then by the remarks
made before we have 8(f) < dist(f; n*(M)).

Remark 1.3. 1In Olech [4] the formula dist(f} 7*(%,(Y; E))) = 6(f) was
proved for X and Y compact, and E a uniformly convex Banach space (see
[4, Theorem 2]). Indeed, Olech has the formula as a corollary to his more
difficult result that, under the hypothesis above, each f€ #,(X; E) has a best
approximation g from W = n*(%,(Y; E)), i.e., dist(fs W)= f—gl/, and for
such g, || f— gl =6(f). We have seen that the formula for the distance is
true in general and does not depend on the existence of a best approximation
from W, indeed it is a corollary of the “strong” version of the
Weierstrass—Stone theorem that we proved, namely, Theorem 1.5.

Let us now consider the case of best simultaneous approximation.
Consider then a totally bounded subset F < %,(X; E) and the associated
carrier ¢ from X into E defined by ¢(x) = {f(x); f€ F} for all x € X. Since
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F is bounded, it follows that ¢ is a 4-bounded carrier for any equivalence
ralation 4 on X.
For each y € Y define

F ' (»)=Ulf(z "(»)SEF)
and

O(F) = sup{rad(F(z~'(»)): ¥y € Y.

Then 6(F) = d(p), and by Theorem 2.1
rad,(F) < 6(F)

for W= n*(M), where M is as in Theorem 2.2. Conversely, each g € n*(M)
is constant on 7~ '(y) for every y € Y. Thus

dist(p: g)=sup sup sup |z —g(r)

YEY tex—I(y) zeoll)

WV

sup inf sup sup |z—vo
YEY reE t(en-l(y) zeoell)

= sup inf sup supl|f{)— ]
fer

veY veE ten-W(y) fe

= sup rad(F(z~'(»))) = 6(F).

YevY

Hence
O(F) < dist(p; W) =rad ,(F).
We have thus proved the following:
THEOREM 2.4, Let Y be a locally compact Hausdorff space and let M be

a €, (Y; K)-submodule of €,(Y; E) such that M(y)=FE for all y€ Y. Then,
Jor any totally bounded subset F c %,(X; E), we have

rad,.un(F) = sup{rad(F(z~'(y)))y € ¥}
if m: X - Y is a proper continuous surjection.
COROLLARY 2.5. Let Y, M and n be as in Theorem 2.4. For any bounded
subset F € (X E) we have
8(F) < rad . (F) < 8(F) < 8(F) + a(F)

where 6(F) = sup{rad(F(z~'(y)));y € Y.
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Proof. The inequality 6(F) < rad,.,,(F) was established in the proof of
Theorem 2.4. Indeed, in that part of the proof the arguments depend only on
F being bounded. The inequality rad,.,,(F) < d(F)+ a(F) follows from
Theorem 2.4 in the same way as Theorem 1.14 follows from Theorem 1.11.

3. WEIGHTED APPROXIMATION OF SET-VALUED MAPPINGS

Throughout this section X stands for a completely regular Hausdorff space
and E stands for a locally convex Hausdorff space over K, where K =R or
K=C. If Vis a family of upper semicontinuous non-negative functions on
X, we denote by €V _(X; E) the vector subspace of #(X; E) consisting of all
f€ Z(X; E) such that yf vanishes at infinity, for each v € V, that is, {x € X;
v(x) p(f(x)) > e} is compact, for each ¢ > 0, and each continuous seminorm
p on E. We introduce a locally convex topology on %V _(X;E) by
considering the family of seminorms f— sup{v(x)p(f(x)); x € X}, where
vE V and p is a continuous seminorm on E. Without loss of generality, we
may assume that V' is upper directed in the following sense: given v and u in
V, there are ¢ > 0 and w € V such that

max(v(x), u(x)) < tw(x)

for all x € X.

Let us consider a subalgebra A c#(X;KK) and a vector subspace
W c#V_(X; E) which is an A-module, that is, AW c W under pointwise
multiplication operation. The weighted approximation problem posed by
Nachbin {3, p. 289] consists in asking for a description of the closure of W
in @V (X; E). This was solved by Nachbin in the case K=R, or K=C
and A self-adjoint, under the following hypothesis: every a € 4 is bounded
on the support of every v € V. (See |3, Theorem 1, p. 295].)

DEFINITION 3.1. Let ¢ be a carrier of X into E. We say that ¢ is lower
semicontinuous (l.s.c.) with respect to W —#V (X; E) if for each we W,
v €V, £¢>0 and p a continuous seminorm on E, the set

{X € X5 0(x) N By, (W(X); €) # B}
is open, where
B (0,(W(x); €) = {1 € E; v(x) p(t — w(x)) < &}

Similarly, we say that ¢ vanishes at infinity with respect to
W%V (X;E) if, for each w, v, ¢ and p as above, the set

{x € X5 0(x) N (E\B,,(,(W(x); £)) # B}

is relatively compact.
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ExaMpLE 3.2. If fEZV (X;E), then o(x)={f(x)}, xE X, is lower
semicontinuous and vanishes at infinity with respect to any
Wc#V (X, E)

DEFINITION 3.3. Let ¢ be a carrier of X into E, and let W c #V (X; E)
be a non-empty subset. We say that ¢ is W-admissible if ¢ is lower semicon-
tinuous and vanishes at infinity with respect to W.

DEFINITION 3.4. Let ¢ be a carrier of X into E, and let W &V (X E)
be a non-empty subset. Given v € V, ¢ > 0 and p a continuous seminorm on
E, we say that g€ W is a (v, &, p)— approximate W-selection for ¢, if
g(x) € o(x) + B, ),(0;¢) for all x&€ X. And we say that ¢ can be V-
approximated by elements of W if ¢ has (v, ¢, p)-approximate W-selections
for all choices of v € V, ¢ > 0 and p a continuous seminorm on E.

The weighted approximation problem for set-valued mappings consists in,
given a subspace W @V (X; E), find necessary and sufficient conditions
for a W-admissible carrier ¢ to be V-approximated by elements of W.

If fEZV (x; E) and for all x € X, ¢(x)= {f(x)}, then clearly ¢ can be
V-approximated by elements of W @V _(X; E) if, and only if, f/ belongs to
the closure of Win #V_(X; E).

Let us remark that if ¢ is a carrier and W is an A-module, where
A E# ,(X;IK), then in order to prove that ¢ can be V-approximated by
elements of W, we may assume without loss of generality that 4 is closed in
%,(X; K) in the sup-norm. Indeed, let B denote the closure of 4 and assume
that ¢ can be V-approximated by elements of the B-module W' generated by
W.Let vEV, € >0 and p a continuous seminorm on E be given. Then we
can find 2 € W’ such that h(x) € p(x) + B,,,,(0; ¢/2) for all x € X. Suppose
h=3" | bw, withb,EB, w,€ W, i=1,2,..., n. Choose 6 > 0 so small that
0327 v(x)pwix))<e/2 for all xEX. Let a,EA be such that
la(x)—bx) <dforall x€X,i=1,2,.,n Then g=3"7_, a;w, belongs to
the A-module W and g(x) € ¢(x) + B,,),(0; ¢) for all x€ X.

THEOREM 3.5. Let A c%,(X;K) be a self-adjoint subalgebra and let
Wc#V,(X; E) be an A-module. Let ¢ be a W-admissible carrier of X into
E such that ¢(x) is convex for each x € X. We can V-approximate ¢ by
elements of W if, and only if, for each x € X, ¢|4(x) can be V|A(x)-
approximated by elements of W|A(x), where A is the equivalence relation
defined by A.

Proof. The condition is obviously necessary. Conversely, assume that ¢
is such that, for each xE€ X, ¢|d4(x) can be V|d(x)-approximated by
elements of W|d4(x).

Let vE€ V, ¢ > 0 and p a continuous seminorms on E be given.
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Without loss of generality we may assume that 4 contains the constants.
Indeed, the algebra B generated by A and the constants defines the same
equivalence relation on X as 4, and W is a B-module. By the remarks
preceding the theorem we may also assume that 4 is a closed subalgebra of
F(X; ).

For every x€ X, there is some g . &€ W such that for all 1€ A(x),
8.(1) € 9(1) + B (1,(0s &). Let w(t) be the set (1) + B,,,,(0; &), for all 1 € X.
Since ¢ is lower semicontinuous with respect to W, the set

U,={x" €X;8,(x') € w(x')}

is open and, by hypothesis, U, > 4(x). On the other hand, since ¢ vanishes
at infinity with respect to W, the set

Sx - {x, E X’ $(xl)m (E\Bv(x)p(gx(x’); 8) ¢ Q}

is relatively compact. Now K,=X\U, is closed and contained in S,:
therefore K, is compact. By [3,Lemma 1], there exists a finite set
{X15 X35y X,} © X and, for each 1 i< n, there is ¢, € A4 such that ¢, >0,
9:|K,,=0and 3"\, 0;=1 on X. Then g=3"7, ¢, g, belongs to W and
8(x) € 9(x) + B, ,(0; ¢), for all x € X.

In fact, either x€ K, and then ¢,(x)=0; or else x& K, and then
8 (%) € (x) + B,,,(0; €). Hence g(x) is a convex combination of elements
which  lie in the convex set ¢(x)+ B,,(0:€). Therefore
g(x) € o(x) + B (,),(0; ¢) for all x € X; ie., g is a (v, &, p)-approximate W-
selection for ¢.

Remark 3.6. Notice that we proved the following stronger result: if for
each x €EX, ¢|d(x) has a (v, &, p)-approximate (W|d(x))-selection, then ¢
has a (v, ¢, p)-approximate W-selection.

Hence we have shown that in the approximation lemma of Blatter |1,
p. 37|, neither paracompactness of T nor compactness of the equivalence
classes of the equivalence relation R are needed, if instead of the usual
notion of lower semicontinuity for set-valued mappings, one requires l.s.c. in
the sense of Definition 3.1. Notice that, when a carrier ¢ from X into E is
l.s.c. with respect to the set W @V _(X; E) of all constant functions, then
[x EX; o(x)M U+ @} is open in X, for every open set U of X; that is, ¢ is
l.s.c. in the usual sense. One example of V such that ZV _(X; E) actually
contains the constant functions in given by the set V of all characteristic
functions of compact subsets. Indeed, in this case #V_(X;E) is just
% (X; E) with the compact-open topology.

Another example is given by the set V" of all positive functions belonging
to #,(X;R) for a locally compact space X. In this case #V _(X; E) is
#,(X; E) with the strict topology.
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However, when V is the set of all positive constant functions on X,
FV (X E) is €(X; E) with the uniform topology and, unless X is compact,
it contains no non-zero constant function.
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